5.1 - Derivative of the Natural Logarithmic Function

Quick review:

Properties of logs:

Derivative of In. Let u be a differentiable function of x.

$$\frac{d}{dx} \left[\ln(\mathbf{u}) \right] =$$

<u>Ex. 1:</u> Differentiate each of the following logarithmic functions

a)
$$\frac{d}{dx} \left[\ln \sqrt{x} \right]$$
 b) $\frac{d}{dx} \left[\ln \left(x^2 + 1 \right) \right]$ c) $\frac{d}{dx} \left[x \ln x \right]$

d)
$$y = \ln\left(\frac{10}{x}\right)$$
 e) $y = (\ln(x))^2$

Ex. 2: Use logarithmic properties to differentiate the following functions.

a)
$$y = \ln \sqrt{2x+1}$$
 b) $f(x) = \ln \frac{x(x^2+1)^2}{\sqrt{2x^3-1}}$

Because the natural logarithm is undefined for negative numbers, you will often encounter expressions of the form $\ln |u|$. When you differentiate functions in the form $y = \ln |u|$, do everything as usual.

<u>Ex.</u> 3: Find the equation of the tangent line for $f(x) = \ln |2\sin 2x + 3|$ at x = 0.

Theorem – Derivatives for Bases Other than e

Let a be a positive real number $(a \neq 1)$ and let u be a differentiable function of x.

$$\frac{d}{dx} \left[\log_a u \right] =$$

<u>Ex. 4</u>: Find the derivative of each of the following:

a)
$$y = \log_5 \sqrt{x}$$
 b) $y = \log_3(2x^4 + 1)$

Ex 5. Logarithmic Differentiation: $y = x^x$

<u>Ex 6.</u> The total energy expenditure per day (in excess of growth) for a species of fawn is given by $E(x)=0.774 + 0.727 \ln(x)$, where x is the fawn's mass in grams and E(x) is the energy expenditure in kJ/day. Find and interpret E'(10,000), including units.

<u>Ex 7.</u> Implicit. If tan $x = \ln(xy)$, find dy/dx.

<u>Ex. 8</u> Find when a particle is at rest if its position on the x axis at time t is $y = t \ln(t)$